‘Bio-based and bio-sourced materials’

7 May 2015
The rediscovery of biomass as a raw material
Bio-materials in a circular economy

Biological cycle
- Farming
- Biodegradation (e.g. composting)
- NPK restoration
- Cascades

Technical cycle
- Sourcing
- Production
- Use
- Recycle
- Reuse
- Energy recovery

- Landfill

Leakage—to be minimised
Systemic considerations

1. Regenerative agriculture

2. Biological by-products as resources

3. Reverse cycles
Regenerative agricultural techniques

- Current high-yield agricultural practices tend to erode topsoil and deplete nutrient levels.

- The application of integrated farming and other permaculture principles has a measurable impact on the preservation of natural capital.

Example of wheat-maize rotation grown in Red Ferralsol soil
Native – Brazilian sugar cane company

- ‘Ecosystem Revitalising Agriculture’
 - **Rising crop yield**, from 98 to 156 tonnes of cane per hectare
 - **Stronger cane** and falling pest numbers,
 - **Reduced use of natural resources**
 - Increasing **biodiversity**

- Large-scale business
 - **75,000 tonnes of organic sugar** in 2013 -- 34 per cent of the world market
 - Aim of **50 tonnes of biodegradable plastic** a year

Source: Wired
Biological by-products as resources
Pinatex – textile from pineapple leaves
Pinatex - Pineapple plant
Veolia – plastic from wastewater and sludge

Other examples include bioplastics from **pulp and paper production waste** or from **cooking oil**
Reverse cycles

Biological cycle

- Farming
- NPK restoration
- Biodegradation (e.g. composting)
- Cascades

Technical cycle

- Sourcing
- Production
- Use
- Recycle
- Reuse
- Energy recovery
- Landfill

Leakage—to be minimised
Ecovative material – to be composted
Coca Cola Plant Bottle – to be recycled
Cascading

Example of clothing cascading

1. Furniture stuffing material can be reused several times
2. Examples of reuse include donation, exchange, resale

Source: Ellen MacArthur Foundation circular economy team
Bio-based materials and bio-refinery are forming a *growing industry*.

Leveraging biomass as a resource offers important *economic opportunities* while leveraging renewable resources.

The *renewability* of the resources, and therefore the long-term viability of this industry, depend on a number of *systemic considerations*.
The Business Case for the Circular Economy
Contents

- DSM introduction
- Unrealized Value - Why do we care?
- Case Studies
- Conclusion and Discussion
Global Nexus Trends Drive DSM’s Strategy

- **Health & Wellness**
 - Ageing population
 - Healthcare costs
 - Food security

- **Global shifts**
 - Population growth
 - Urbanization
 - Wealth

- **Climate & Energy**
 - Resources constraints
 - Energy security
 - Sustainability

Health

Nutrition

Materials
Risk & Opportunities - Private Sector

Risk
- material price volatility
- supply chain risk
- regulatory risk
- reputation risk
- resource scarcity
- obsolescence and inertia

Opportunity
- risk mitigation
- better knowledge sharing, partnerships and collaboration
- improved productivity, efficiency, less waste, increased profitability
- innovative business models and products - sustainable competitive advantage
- improved license to do business
- capacity to recruit, retain, develop and deploy talent
To Go From a Linear To a Circular Economy
The Ever-Changing Environment of Oilseed Processing
Caustic Refining of Oil is not a Long-Term Solution

From crude to refined oil, it must be:

- degummed to remove phospholipids
- refined, bleached and deodorized

Traditional industry practice is caustic refining. This:

- creates oil yield losses of 2 - 6%
- created undesirable by-products
- is not a sustainable process solution

Picture: Comparison between crude (left) and refined (right) oil
Add a Little, Do a Lot with Purifine

AVERAGE PLANT VOLUME

- **5000 MT crushing p/day**
- **1000 MT crude oil p/day**

SPECIFICATIONS

- Crude soybean oil
- 1200 ppm phospholipids

VALUE OF OPPORTUNITY

- **3% extra = 30 MT p/day**
- **+ $7 million per year**

at an oil price of $800 p/MT, 300 operational days per year, excluding savings on chemicals & energy and costs of Purifine
Additional 40 million people per year could meet their need for vegetable oil.

1.5 million acres more arable land for agriculture.

Equal to the population of California.

If 30% of all soybean oil in the world was refined using Purifine®

480,000 tonnes CO₂ saved yearly.

The same yearly amount of greenhouse gases is produced by

The global gross economic benefit would be increased by 300 MILLION U.S. Dollar / YEAR for soybean oil production alone.

Equal to the size of Chicago.

The whole food supply chain for 100,000 American citizens.
Cornstover Residue on the Field

Case Study 2: Cellulosic ethanol
Becomes An Opportunity in the Circular Economy
Becomes an Business with Biotechnology

![Diagram of biomass conversion to fuel](image)

- **Biomass**
- **Plant cells**
- **Cellulose**
- **Hemi-cellulose**
- **Lignin**
- **Glucose**
- **Xylose**
- **Arabinose**
- **Glucose**
- **Galactose**
- **Mannose**

Issue - **Solution** - **Impact**
To Unlock the Potential of Cellulosic Bio-Ethanol

POET-DSM Advanced Biofuels
A Farmer’s Perspective; More Than Biomass Revenue!

- Residue Management
- Potential Yield Advantages
- Disease Pressure
- Nutrient Savings
- Combine Fuel Savings

Profit increases from $12-$123/ac

Biomass Revenue
Towards a Sustainable World in 2050

DSM’s Science and Innovation themes

- Sustainable Manufacturing/ Raw Materials Security
- Health Security
- Energy Security
- Food & Nutrition Security

More than 9 billion society in 2050